Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Plant Foods Hum Nutr ; 78(2): 439-444, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37351712

RESUMO

Mung bean is a kind of legume commonly eaten by human. In the present study, a HPLC method for analyzing of two C-glycoside flavonoids, isovitexin and vitexin, in Mung bean was developed. Results showed that the flavonoids are mainly existed in Mung bean coat (MBC), while kernel contains very trace. The extraction of C-glycoside flavonoids from MBC was optimized. MBC extracts with isovitexin and vitexin contents of 29.0 ± 0.28% and 35.8 ± 0.19% were obtained with yield of 1.6 ± 0.21%. MBC extracts exhibited inhibitory activities on pancreatic lipase and α-glucosidase with IC50 values of 0.147 mg/ml and 0.226 mg/ml, respectively. The inhibitory kinetics revealed that MBC extracts showed mixed-type inhibition on these enzymes. Fluorescence quenching titration confirmed the binding of MBC extracts with the enzyme proteins. In vivo study revealed that pre-administration with MBC extracts significantly reduced the triglyceride absorption. Furthermore, it also improved postprandial hyperglycemia in rats through the inhibition of α-glucosidase.


Assuntos
Fabaceae , Vigna , Ratos , Humanos , Animais , Flavonoides/farmacologia , Flavonoides/química , Lipase , alfa-Glucosidases/metabolismo , Vigna/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fabaceae/química
2.
Curr Res Food Sci ; 6: 100424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36618100

RESUMO

Lipase is a very important digestive enzyme for triglyceride absorption in vivo. The inhibitory activities of 26 dietary flavonoids, including flavone, flavanone, isoflavone and flavanol, on lipase were determined. Flavone exhibited stronger inhibitory activity than other types of flavonoids. Among them, luteolin exhibited the strongest inhibitory activity with IC50 value of 99 ± 11 µM, followed by quercetin and baicalein. The binding affinity of these flavonoids with lipase was investigated by fluorescence titration method. The binding affinity of flavones was stronger than flavanones, and was linearly positively correlated with their inhibitory activity. The binding of flavones on lipase caused the blue-shift of fluorescence, while flavanones caused red-shift. The analysis of structure-activity relationship of flavonoids on lipase revealed that the structure of C ring is very crucial. The hydrogenation of C2=C3 bond and the absence of C=O group in C ring both caused significant decrease of inhibitory activity. Besides, the hydroxylation on ring A and B of flavones increased the activity, while glycosylation weakened the activity. Molecular docking analysis confirmed that C2=C3 bond in C ring of flavones increases the π-conjugation and contributes to maintaining the planarity of flavonoid structure, which favour its Pi-Pi interaction with lipase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...